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SOLUTIONS OF DIFFERENTIAL EQUATIONS WITH REGULAR COEFFICIENTS
BY THE METHODS OF RICHMOND AND RUNGE-KUTTA

ABSTRACT

Numerical solutions of the differential equation which
describes the electric field within an inhomogeneous layer of
permittivity, upon which a perpendicularly-polarized plane wave is
incident, are considered. Richmond's method and the Runge-Kutta
method are compared for 1linear and exponential profiles of
permittivities. These two approximate solutions are also compared
with the exact solutions.



INTRODUCTION

The treatment of perpendicularly-polarized plane wave
incidence on inhomogeneous dielectric or plasma layers has been
investigated by many authors [1-3]. Their efforts have been
directed toward solving the differential equations which describe
the electromagnetic behavior of fields within these layers.
Solutions for continuous inhomogeneous layers require, in general,
numerical techniques. Exact solutions for linear and exponential
profiles are available [4].

Many methods have been used to solve the differential
equations describing the fields within an inhomogeneous layer.
Dividing the 1layer into a number of smaller segments and
approximating the inhomogeneous profile by constant permittivity
values within each segment, the multilayer boundary value problem
is then solved. Approximate integral solutions are also available
as are WKB asymptotic solutions where the inhomogeneous profile
(or permittivity) gradient is small [5,4]. For these solutions
the computation time is too long or the model is too crude to
yvield accurate results.

Practical solutions have been obtained using the Runge-Kutta
method [6] and a step-by-step numerical method described by
Richmond [7]. Both solutions have been programmed on a personal
computer and the results compared. A comparison with exact
solutions, linear and exponential, has also been made.

The primary purpose of this paper is to explain and
demonstrate the Richmond and Runge-Kutta methods for solving a
differential equation in which its parameters may or may not be
known analytically. For definiteness, therefore, the differential
equation which represents the electric field within a plane
inhomogeneous layer of dielectric or plasma, upon which a
perpendicularly-polarized plane wave has been assumed incident,
has been considered. An efficient solution of this differential
equation for this ideal model 1is needed since the same
differential equation exists for realistic problems such as
aperture antennas which are bounded by inhomogeneous dielectric or
plasma layers.



INHOMOGENEQUS PILANE IAYER-PERPENDICULAR POLARIZATION

A plane wave is incident on a plane inhomogeneous layer of
dielectric or plasma as shown in figure 1. The incident electric
field which is polarized in the x-direction propagates in free
space (region I) at an angle @ with the normal to the layer. The
transmitted electric field which is also x-polarized exists into
free space (region III) at an angle 8. The partial differential
equation for the electric field in the free space regions and in
the inhomogeneous layer is written as
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where k is the free space wavenumber and er(z) is the relative

dielectric constant of the medium. Since the relative dielectric
constant in free space (regions I and III) equals one, the
solutions of equation (1) in these regions are readily found:

el(y,z) = E, + R (2)
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where Ei is the intensity of the incident electric field, R is the
reflection coefficient at the interface, and Et is the transmitted
electric field intensity. However, in region II, since er(z) can

be an arbitrary function of z, the solution of equation (1) must
be determined numerically, except for some specialized profiles
‘'such as linear and exponential.

Before attempting the solution of equation (1) in region II,
it is reduced to an ordinary differential equation. This is
readily accomplished by the method of separation of variables and
the continuity of tangential fields throughout the media. The
continuity requirement forces the y-variation in the fields to be
the same as given in equations (2) and (3). The differential
equation describing the =z-variation of the electric field is
written as

dinI(z)

d22

+ X2 e (z) - sin%e )EiI(z) =0 (4)



Richmond's Method

One method of solving equation (4) for region II is reported
in a paper by Richmond (7]. In his method a step-by-step
numerical procedure is used to find the electric field within the
layer at successive points. To begin the solution, the field at
z=0 and z=h, which is a small distance within the layer, must be
determined first. The field at z=0 is assumed to be unity and the
field at z=h is found from the Maclaurin series expansion at
z=0; i.e.,
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and € is the complex relative permittivity at the point z= 0, and
de
c

Iz is the derivative of the permittivity with respect to z at the

point z=0_. Substituting equation (6) into equation (5) yields
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where € is the real relative permittivity, e’ is the derivative

of the real relative permittivity with respect to z, and tans is
the loss tangent. The subscript + denotes evaluation at z=0+.

The Taylor series expansion of the electric field about the
point z=nh is written as
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Evaluating equation (8) at 2z=nh+h and 2z=nh-h and adding the
result, thus giving
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Employing the notation of Richmond, equation (9), with equation
(10) substituted, the electric field in the layer becomes
EIV
. _ 2,2 a2 _ 2 °n
En+l = [ 2 X“h (en sin~8) ] En En_1 + h 15— (13)

where Eiv denotes equation (11). The dielectric or plasma layer is
divided into N segment so that Nh equals D, the thickness of the
layer. The criteria for choosing the appropriate step size h is
discussed in reference 7. The solution of equation (13) is
determined in a step-by-step procedure as n varies from unity to
N; i.e., for n=1 the field at z=2h is computed from equation (13)
since the fields at z=0 and z=h are given by equations (6) and (7)
and the fourth derivative of the field at =z=h 1is given by

equations (10)-(12). By proceeding through the layer in this
manner, the field at the region I and region II interface is
determined. The field at this interface then enables one to

determine the reflection coefficient.



Runge-Kutta Method

The equations needed for solving second-order differential
equations of the form

dY - £(z,y) (14)

by the Runge-Kutta method are given in reference 6.
Equation (4) is written in this form as

2_II
a“E (2)
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dz

Using the notation adapted earlier, the electric field at a
general point z=nh where h is the spacing within the layer is
represented as En and at 2z=nh+h as En+1’ From the fourth-order

Runge-Kutta method, the solution takes the form

= ‘L1
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where the primes denote the derivative with respect to z and
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with
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In this procedure, n varies from zero to N-1. The initial values
Eg and EO are given by the first two equations in equation (6).



DISCUSSION OF RESULTS

Linear and exponentlal profiles were chosen to demonstrate
the Richmond and Runge-Kutta methods for solv1ng the differential
equations. A comparison of these methods is made. These two
proflles were selected since they also have exact solutions as
shown in the Appendix.

The particular linear profile chosen is shown in figure 2.
The relative permittivity €. begins at a value of minus one (the

exit point) and rises to a value of two at the front interface of
the inhomogeneous layer. The real and imaginary parts of the
electric fields at front interface for the Richmond (equation
(13)) and the Runge-Kutta (equation (16)) methods are shown in
Table I for 5° increments in the angle of incidence. Also shown
are the complex values of the electric fields for the exact
solutions (Airy-equation (A-8)). The approximate computational
time for each value in the Richmond method was 8 seconds compared
to 12 seconds for the Runge-Kutta method. Both methods compare
very favorably with the exact solutions as can be readily seen in
Table I.

TABLE I

ELECTRIC FIELD DISTRIBUTION AT INTERFACE OF INHOMOGENEOUS
LAYER-LINEAR PROFILE

[ m= 3k and b=-1|

Richmond Runge-Kutta Exact-Airy
Angle Real Imag Real Imag Real Imag
0] 0.9918 0.9178 0.9919 0.9179 0.9919 0.9179
5 0.9954 0.9155 0.9955 0.9156 0.9955 0.9156
10 1.0063 0.9086 1.0065 0.9086 1.0065 0.9086
15 1.0243 0.8969 1.0244 0.8969 1.0244 0.8969
20 1.0488 0.8800 1.0489 0.8800 1.0489 0.8800
25 1.0794 0.8577 1.0794 0.8577 1.0794 0.8577
30 1.1150 0.8296 1.1152 0.8296 1.1152 0.8296
35 1.1550 0.7953 1.1552 0.7953 1.1552 0.7953
40 1.1983 0.7543 1.1985 0.7543 1.1985 0.7543
45 1.2435 0.7065 1.2437 0.7065 1.2437 0.7065
50 1.2894 0.6515 1.2895 0.6516 1.2895 0.6516
55 1.3345 0.5895 1.3336 0.5895 1.3346 0.5895
60 1.3775 0.5206 1.3775 0.5206 1.3775 0.5206
65 1.4166 0.4452 1.4167 0.4452 1.4167 0.4452
70 1.4508 0.3640 1.4509 0.3640 1.4509 0.3640
75 1.4788 0.2777 1.4789 0.2777 1.4789 0.2777
80 1.4995 0.1874 1.4997 0.1874 1.4997 0.1874
85 1.5124 0.0944 1.5125 0.0944 1.5125 0.0944
90 1.5167 0.0000 1.5168 0.0000 1.5168 0.0000




The exponential profile selected for comparison is shown in
figure 3. The relative permittivity €. begins at a value of one

and rises to a value of e at the front interface of the
inhomogeneous layer. The values of the real and imaginary parts
of the electric fields at the front interface for the Richmond and
Runge~-Kutta methods are shown in Table II for 5 increments in the
angle of incidence. Also shown are the complex values of the
electric fields for two angles of incidence ( 0 and 30 ) for the
exact solution (Bessel-equation (A-17 )); these two angles were
selected because, for the parameters used in these computations,
they yield integer order Bessel functions which are easily
calculable. The approximate computational time for each value in
the Richmond method was 9 seconds compared to 12 seconds for the
Runge-Kutta method. Both methods compare very favorably with each
other as well as to the two exact solutions as can be readily seen
in Table II.

TABLE II

ELECTRIC FIELD DISTRIBUTION AT INTERFACE OF INHOMOGENEOUS
LAYER-EXPONENTIAL PROFILE

Richmond Runge-Kutta Exact-Bessel
Angle Real Imag Real Imag Real Imag
o 0.3736 0.7411 0.3738 0.7411 0.3738 0.7411
5 0.3766 0.7393 0.3767 0.7393
10 0.3851 0.7340 0.3853 0.7340
15 0.3993 0.7249 0.3994 0.7249
20 0.4187 0.7119 0.4188 0.7119
25 0.4427 0.6945 0.4430 0.6945
30 0.4711 0.6725 0.4713 0.6725 0.4722 0.6722
35 0.5028 0.6455 0.5030 0.6455
40 0.5372 0.6130 0.5373 0.6130
45 0.5731 0.5748 0.5733 0.5749
50 0.6096 0.5308 0.6098 0.5308
55 0.6456 0.4809 0.6457 0.4809
60 0.6798 0.4251 0.6800 0.4252
65 0.7112 0.3639 0.7113 0.3640
70 0.7385 0.2976 0.7387 0.2978
75 0.7610 0.2273 0.7611 0.2273
80 0.7776 0.1535 0.7777 0.1535
85 0.7878 0.0774 0.7880 0.0774
90 0.7912 0.0000 0.7914 0.0000

Reflection coefficients at the front interface of the
inhomogeneous layers are also of interest. The equations required
for computing the reflection coefficients are given in reference
7. Magnitude and phase of the reflection coefficients for the
linear and exponential profiles discussed in this paper are shown
in Tables III and 1IV.



TABLE III

REFLECTION COEFFICIENTS AT INTERFACE OF INHOMOGENEOUS
LAYER-LINEAR PROFILE

[ m="3k and b=-1 |

Richmond Runge-Kutta
Angle Magnitude Phase Magnitude Phase
in radians in radians

0] 0.2925 -.0548 0.2929 -.0825%
5 0.2932 -.0480 0.2936 -.0757
10 0.2954 -.0277 0.2957 -.0553
15 0.2991 0.0030 0.2992 -.0211
20 0.3044 0.0542 0.3043 0.0268
25 0.3116 0.1159 0.3112 0.0889
30 0.3208 0.1919 0.3201 0.1655
35 0.3324 0.2828 0.3314 0.2571
40 0.3473 0.3897 0.3457 0.3644
45 0.3659 0.5127 0.3638 0.4885
50 0.3896 0.6540 0.3870 0.6308
55 0.4202 0.8154 0.4169 0.7934
60 0.4604 1.0007 0.4564 0.9797
65 0.5137 1.2139 0.5092 1.1946
70 0.5862 1.4642 0.5811 1.4463
75 0.6840 1.7644 0.6788 1.7485
80 0.8090 2.1351 0.8048 2.1221
85 0.9384 2.5981 0.9367 2.5901
90 1.0000 3.1416 1.0000 3.1416
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TABLE IV

REFLECTION COEFFICIENTS AT INTERFACE OF INHOMOGENEOUS
LAYER-EXPONENTIAL PROFILE

Richmond Runge-Kutta
Angle Magnitude Phase Magnitude Phase
in radians in radians

0 0.2788 -2.4876 0.2825 -2.4801
5 0.2800 -2.4863 0.2837 -2.479%91
10 0.2836 -2.4833 0.2874 -2.4762
15 0.2898 -2.4780 0.2935 -2.4714
20 0.2986 -2.4710 0.3024 -2.4651
25 0.3105 -2.4631 0.3144 -2.4575
30 0.3258 -2.4540 0.3297 -2.4494
35 0.3449 -2.4450 0.3489 -2.4414
40 0.3686 -2.4372 0.3727 -2.4345
45 0.3979 -2.4320 0.4021 -2.4302
50 0.4340 -2.4311 0.4382 -2.4303
55 0.4784 -2.4373 0.4828 -2.4374
60 0.5334 =2.4542 0.5376 -2.4553
65 0.6009 -2.4868 0.6051 -2.4889
70 0.6831 ~-2.5427 0.6969 -2.5455
75 0.7791 -2.6306 0.7823 -2.6338
80 0.8808 -2.7601 0.8828 -2.7631
85 0.9656 -2.9348 0.9663 -2.9367
90 1.0000 -3.1416 1.0000 -3.1416
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CONCLUDING REMARKS

The numerical techniques of Richmond and Runge-Kutta were
shown to be quite efficient for solving the second-order
differential equation which describes the field within a plane
inhomogeneous layer of permittivity, upon which a perpendicularly-
polarized plane wave has been assumed incident. Richmond's method
seems to be little more efficient than the Runge-Kutta method, at
least for the two relative permittivity profiles considered.

Although the techniques of Richmond and Runge-Kutta were
applied to analytical profiles, they should be equally valid for
arbitrary relative permittivity profiles or even profiles which
are known discretely. This 1s important because realistic
relative permittivity profiles may take on almost any shape.
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APPENDTX

Exact solutions of equation (4) are available for only a few
relative permittivity profiles [3,4]. A brief derivation of the
solutions of equation (4) for linear and exponential profiles is
given here.

For the linear profile, the relative permittivity is assumed
to vary as

er(z) =mz + b (A-1)
where m is the slope of the profile and b is the beginning value
of the profile ( at z=0 ). Substituting equation (A-1) into
equation (4) yields

2
d°E,(z)
p)

+ kz( mz + b - sin’e ) Ex(z) =0 (A=-2)

dz
By making the substitution
zZ =Mv + B (A-3)
equation (A-2) becomes

dZEX(v)

2

+ { Mzkz[ mMv+mB+ b - sinze ]} E (v) =0 (A-4)
dv X

By equating the term in braces to -v and solving for M and B, it
is found that

dzEx(v)
-vE_(v) =0 (A-5)
dv2 X
where
A
1
mk2 »
- (A-6)
2
B = sin“8 - b
m

/

From equations (A-3) and (A-6), it follows that
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2
v=-(mz+ b- sin®e )[ % ]3 (A=7)

The solutions of equation (A-5) are the two independent Airy
functions, Ai(v) and Bi(v) ([4]. The general solution of equation
(A-5), therefore is written as

Ex(v) = ClAi(v) + CzBi(v) (A-8)

where C1 and C2 are constants. These constants are determined by

applying the appropriate boundary conditions at z=0. The boundary
conditions are given by the first two equations in equation (6)
but which must be expressed in terms of the new independent v.
The evaluation of the constants is given in matrix form as

c, Bi(Ve) = Bi(Vo) 1
1 1
=D ! . (k)3 (A=9)
02 - Ai (Vo) Ai (Vo) -j[ = ] cos8
m
! where
; 7 ’ \
% D= Ai(Vo)Bi(Vo) - Ai(Vo)Bi(Vo)
|
5 L (A-10)
Vo = = [ % ]3 [ b - sin’e }
1
| and the primes denote the derivative with respect to v. For the

solutions in this paper m=3k and b=-1. Once the C's are determined,
the electric field at any point in the layer is computed by using
equation (8).
; For the exponential profile, the relative permittivity is
| assumed to vary as

£.(2) = eP? (A-11)

Substituting equation (A-11) into equation (4) yields

2
d°E,(2)
2

+ X2 [ eBZ _ sin?e ] E (z) =0 (A-12)

1 dz

Following the substitution given in reference 4,
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Bz
T2

2k e (A-13)

B

the differential equation is now written as

v =

2
d“E_ (V) dE_ (V)
2 X X 2 2
V—-z-—-————‘f'V(i\,—"'(V-p)EX(V):O (A-14)
dv
where
2 4x2 2
pT = = sin“e (A-15)
B

If p is 2zero or a positive integer, the general solution of
equation (A-14) becomes '

E (V) = BjJ (V) + ByY (V) (A-16)

where Jp(v) is the Bessel function of the first kind, Yp(v) is the

Bessel function of the second kind, and the B's are constants.
Upon applying the appropriate boundary conditions at 2z=0, the
matrix for the B's becomes

Bl N Yp(Vo) - Yp(Vo) 1
= B 7 (A-17)
B2 - Jp(Vo) Jp(Vo) J cos8
where
D= Jp(Vo)Yp(Vo) - Jp(Vo)Yp(Vo)
(A-18)
_ 2k
Vo = B
and the primes denote the derivative with respect to v. For the
solutions in this paper, g=k with kD=1. Once the B's are

determined, the electric field at any point in the layer is
computed by using equation (16). If p is not zero or a positive
integer, the general solution of equation (A-14) becomes

Ey (V) = D)J (V) + DyJ_ (V) (A-19)

where the constants D1 and D2 are determined in the manner just

described.
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Figure 1.-Perpendicularly-polarized plane wave incident
on an inhomogeneous plasma layer.
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Figure 2.-Linear profile.

Figure 3.-Exponential profile.
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